学业分层测评(十七)
(建议用时:45分钟)
[学业达标]
一、选择题
1.函数f(x)=sin x+,x∈(0,π)的极大值是( )
A.+ B.-+
C.+ D.1+
【解析】 f′(x)=cos x+,x∈(0,π),由f′(x)=0得cos x=-,x=π,且x∈时,f′(x)>0;x∈时,f′(x)<0,∴x=π时,f(x)有极大值f=+.
【答案】 C
2.已知函数f(x)=2x3+ax2+36x-24在x=2处有极值,则该函数的一个递增区间是( )
A.(2,3) B.(3,+∞)
C.(2,+∞) D.(-∞,3)
【解析】 因为函数f(x)=2x3+ax2+36x-24在x=2处有极值,所以有f′(2)=0,而f′(x)=6x2+2ax+36,代入得a=-15.现令f′(x)>0,解得x>3或x<2,所以函数的一个递增区间是(3,+∞).
【答案】 B
3.设函数f(x)=xex,则( )
A.x=1为f(x)的极大值点
B.x=1为f(x)的极小值点
C.x=-1为f(x)的极大值点
D.x=-1为f(x)的极小值点