习题课--离散型随机变量的均值与方差的应用
1.设样本数据x1,x2,...,x10的均值和方差分别为1和4,若yi=xi+a(a为非零常数,i=1,2,...,10),则y1,y2,...,y10的均值和方差分别为( )
A.1+a,4 B.1+a,4+a
C.1,4 D.1,4+a
解析:¯y=(x_1+a+x_2+a+x_3+a+"..." +x_10+a)/10
=(10¯x+10a)/10
=¯x+a=1+a.
s2=("[" x_1+a"-(" 1+a")" "]" ^2+"[" x_2+a"-(" 1+a")" "]" ^2+"..." +"[" x_10+a"-(" 1+a")" "]" ^2)/10
=("(" x_1 "-" 1")" ^2+"(" x_2 "-" 1")" ^2+"..." +"(" x_10 "-" 1")" ^2)/10=4.
答案:A
2.若X~B(n,p),且EX=6,DX=3,则P(X=1)的值为0( )
A.3×2-2 B.2-4
C.3×2-10 D.2-8
解析:由题意知{■(np=6"," @np"(" 1"-" p")" =3"," )┤解得{■(p=1/2 "," @n=12"." )┤所以P(X=1)=C_12^1×1/2×(1"-" 1/2)^11=12/2^12 =3×2-10.
答案:C
3.从装有除颜色外完全相同的3个白球和m个黑球的布袋中随机摸取一球,有放回地摸取5次,设摸得的白球数为X,已知EX=3,则DX=( )
A.8/5 B.6/5 C.4/5 D.2/5
解析:由题意知,X~B(5"," 3/(m+3)),
所以EX=5×3/(m+3)=3,解得m=2,
所以X~B(5"," 3/5),
所以DX=5×3/5×(1"-" 3/5)=6/5.