课时分层作业(二十一)
(建议用时:60分钟)
[合格基础练]
一、选择题
1.圆x2+y2-4x+4y+6=0截直线x-y-5=0所得的弦长等于( )
A. B.
C.1 D.5
A [圆的方程可化为(x-2)2+(y+2)2=2,则圆的半径r=,圆心到直线的距离d==,所以直线被圆截得的弦长为2=2=.]
2.直线l:mx-y+1-m=0与圆C:x2+(y-1)2=1的位置关系是( )
A.相交
B.相切
C.相离
D.无法确定,与m的取值有关
A [圆心到直线的距离d==<1=r.故相交.]
3.以点(2,-1)为圆心,且与直线3x-4y+5=0相切的圆的方程为( )
A.(x-2)2+(y+1)2=3 B.(x+2)2+(y-1)2=3
C.(x+2)2+(y-1)2=9 D.(x-2)2+(y+1)2=9
D [圆心到直线3x-4y+5=0的距离d==3,即圆的半径为3,所以所求圆的方程为(x-2)2+(y+1)2=9.]
4.直线l与圆x2+y2+2x-4y+a=0(a<3)相交于A,B两点,若弦AB的中点为C(-2,3),则直线l的方程为( )
A.x-y+5=0 B.x+y-1=0