§4 导数的四则运算法则
4.1 导数的加法与减法法则
课时过关·能力提升
1.若y=cos x+ex,则y'等于( )
A.-sin x+ex B.sin x+ex
C.-sin x+1/x D.sin x+1/x
解析:y'=(cos x+ex)'=(cos x)'+(ex)'=-sin x+ex.
答案:A
2.函数f(x)=ax4+bx2+c,若f'(1)=3,则f'(-1)=( )
A.-2 B.2 C.-3 D.3
解析:∵f'(x)=4ax3+2bx,
∴f'(1)=4a+2b=3.
∴f'(-1)=-4a-2b=-3.
答案:C
3.曲线f(x)=1/3x3-x2+5在x=1处的切线的倾斜角为0( )
A.π/6 B.3π/4 C.π/4 D.π/3
解析:因为f'(x)=x2-2x,k=f'(1)=-1,
所以在x=1处的切线的倾斜角为3π/4.
答案:B
4.已知直线y=kx+1与曲线y=x3+ax+b相切于点(1,3),则b的值为( )
A.3 B.-3 C.5 D.-5
答案:A
5.设函数f(x)=g(x)+x2,曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1,则曲线y=f(x)在点(1,f(1))处切线的斜率为( )
A.4 B.-1/4 C.2 D.-1/2
解析:f'(x)=(g(x)+x2)'=g'(x)+2x,
∴y=g(x)在点(1,g(1))处的切线方程为y=2x+1,
∴g'(1)=2,∴f'(1)=g'(1)+2=2+2=4.
∴y=f(x)在点(1,f(1))处的切线斜率为4.
答案:A
6.在函数y=x^(3/2)-x的图像上,满足在点P处的切线的倾斜角小于π/4,且点P的横、纵坐标都为整数,则切线方程为( )
A.x+2y-1=0 B.x-2y-1=0
C.x-2y+1=0 D.x+2y+1=0
解析:设P(x0,y0),由y'=(3√x)/2-1,得0<(3√(x_0 ))/2-1<1,即4/9 又x0∈Z,∴x0=1,y0=0,切线斜率k=1/2. 切线方程为y=1/2(x-1),即x-2y-1=0. 答案:B 7.曲线y=f(x)=sin x-cos x在(π/3 "," √3/2 "-" 1/2)处的切线斜率为 . 解析:f'(x)=cos x+sin x, 则f'(π/3)=cosπ/3+sinπ/3=1/2+√3/2. 答案:1/2+√3/2