§6 平面向量数量积的坐标表示
A组 基础巩固
1.若向量a=(1,2),b=(-3,4),则(a·b)(a+b)=( )
A.20 B.54
C.(-10,30) D.(-8,24)
解析∵a·b=-3+8=5,a+b=(-2,6),
∴(a·b)(a+b)=(-10,30).
答案C
2.已知向量a=(1,k),b=(2,2),且a+b与a共线,则向量a与向量c=(√3,-1)的夹角的余弦值是( )
A.(√6+√2)/4 B.(√6 "-" √2)/4
C.(√3 "-" 1)/4 D.(√3+1)/4
解析a+b=(3,k+2),又a+b与a共线,所以k+2=3k,解得k=1,于是a=(1,1),设a与c夹角为θ,
则cos θ=(a"·" c)/("|" a"||" c"|" )=(√3 "-" 1)/(√2×2)=(√6 "-" √2)/4.
答案B
3.在以OA为边,OB为对角线的矩形中,(OA) ⃗=(-3,1),(OB) ⃗=(-2,k),则实数k=( )
A.4√3 B.3√3 C.√3/2 D.4
解析由已知得(AB) ⃗=(OB) ⃗-(OA) ⃗=(1,k-1),而由题意得(OA) ⃗⊥(AB) ⃗,即(OA) ⃗·(AB) ⃗=-3+k-1=0,故k=4.
答案D
4.已知a=(2,4),则与a垂直的单位向量的坐标是( )
A.(√5/5 ",-" (2√5)/5)或("-" √5/5 ",-" (2√5)/5)
B.(√5/5 ",-" (2√5)/5)或("-" √5/5 "," (2√5)/5)
C.((2√5)/5 "," √5/5)或("-" (2√5)/5 ",-" √5/5)
D.("-" (2√5)/5 "," √5/5)或((2√5)/5 ",-" √5/5)
解析由已知得与a=(2,4)垂直的向量为b=λ(4,-2),即b=(4λ,-2λ),又|b|=1,所以λ=±√5/10,于是所求单位向量为((2√5)/5 ",-" √5/5)或("-" (2√5)/5 "," √5/5).
答案D
5.设x,y∈R,向量a=(x,1),b=(1,y),c=(2,-4),且a⊥c,b∥c,则|a+b|=( )
A.√5 B.√10 C.2√5 D.10
解析∵向量a=(x,1),b=(1,y),c=(2,-4),且a⊥c,b∥c,则有2x-4=0,-4-2y=0,解得x=2,y=-2,故a+b=(3,-1),故有|a+b|=√(3^2+"(-" 1")" ^2 )=√10,故选B.
答案B
6.若平面向量b与向量a=(1,-2)的夹角是180°,且|b|=3√5,则b= .
解析由题意知b=λ(1,-2)=(λ,-2λ)(λ<0).
∵|b|=3√5,∴√(λ^2+4λ^2 )=3√5.
∴5λ2=45,∴λ2=9.
∵λ<0,∴λ=-3.∴b=(-3,6).
答案(-3,6)
7.直线y=2x-1与直线x+y=1的夹角的余弦值为 .