第二章 2 排序不等式
[A 基础达标]
.已知x≥y,M=x4+y4,N=x3y+y3x,则M与N的大小关系是( )
A.M>N B.M≥N
C.M 解析:选B.由排序不等式,知M≥N. .设a,b,c为正数,P=a3+b3+c3,Q=a2b+b2c+c2a,则P与Q的大小关系是( ) A.P>Q B.P≥Q C.P 解析:选B.不妨设a≥b≥c>0,∴a2≥b2≥c2>0. 由排序不等式得:a2a+b2b+c2c≥a2b+b2c+c2a. ∴P≥Q. 已知两组数1,2,3和2,3,4,c1,c2,c3是1,2,3的任一排列,d1,d2,d3是2,3,4的任一排列,2c1+3c2+4c3的最大值为M,d1+2d2+3d3的最大值为N,则( ) A.M=N B.M>N C.M 解析:选A.其最大值都是1×2+2×3+3×4=20. 顺序和,反序和,乱序和大小关系是________. 答案:反序和≤乱序和≤顺序和 [B 能力提升] 某班学生要开联欢会,需要买价格不同的礼品4件,5件及2件,现在选择商店中单价为3元,2元和1元的礼品,则至少要花( ) A.6元 B.19元 C.25元 D.3元 解析:选B.由排序原理可知: 花钱最少为:1×5+2×4+3×2=19(元). a1,a2,...,an都是正数,b1,b2,...,bn是a1,a2,...,an的任一排列,则a1b+a2b+...+anb的最小值是( ) A.1 B.n C.n2 D.无法确定 解析:选B.设a1≥a2≥...≥an>0,