2019-2020学年北师大版选修2-1 课时分层作业8 空间向量的运算作业
2019-2020学年北师大版选修2-1 课时分层作业8 空间向量的运算作业第1页

课时分层作业(八)

(建议用时:40分钟)

[基础达标练]

  一、选择题

  1.已知正方形ABCD的边长为1,设\s\up8(→(→)=a,\s\up8(→(→)=b,\s\up8(→(→)=c,则|a+b+c|等于(  )

  A.0         B.3

  C.2+ D.2

  D [利用向量加法的平行四边形法则结合正方形性质求解,|a+b+c|=2|\s\up8(→(→)|=2.]

  2.已知空间四边形ABCD,连接AC,BD,设M,G分别是BC,CD的中点,则\s\up8(→(→)-\s\up8(→(→)+\s\up8(→(→)等于(  )

  A.\s\up8(→(→) B.3\s\up8(→(→)

  C.3\s\up8(→(→) D.2\s\up8(→(→)

  B [\s\up8(→(→)-\s\up8(→(→)+\s\up8(→(→)=\s\up8(→(→)-(\s\up8(→(→)-\s\up8(→(→))=\s\up8(→(→)-\s\up8(→(→)=\s\up8(→(→)+\s\up8(→(→)=\s\up8(→(→)+2\s\up8(→(→)=3\s\up8(→(→).]

  3.长方体ABCD-A1B1C1D1中,若\s\up8(→(→)=3i,\s\up8(→(→)=2j,\s\up8(→(→)=5k,则\s\up8(→(→)=(  )

  A.i+j+k B.i+j+k

  C.3i+2j+5k D.3i+2j-5k

  C [\s\up8(→(→)=\s\up8(→(→)+\s\up8(→(→)+\s\up8(→(→)=\s\up8(→(→)+\s\up8(→(→)+\s\up8(→(→)=3i+2j+5k.]

4.空间四边形OABC中,OB=OC,∠AOB=∠AOC=,则cos〈\s\up8(→(→),\s\up8(→(→)〉的值是(  )