§5 简单复合函数的求导法则
课后训练案巩固提升
A组
1.函数f(x)=(1-2x)10在点x=0处的导数是( )
A.0 B.1 C.20 D.-20
解析:∵f'(x)=10(1-2x)9(1-2x)'=-20(1-2x)9,
∴f'(0)=-20.
答案:D
2.设y=√(1+a)+√(1"-" x),则y'等于( )
A.1/(2√(1+a))+1/(2√(1"-" x)) B.1/(2√(1"-" x))
C.1/(2√(1+a))-1/(2√(1"-" x)) D.-1/(2√(1"-" x))
解析:y'=(√(1+a))'+(√(1"-" x))'
=1/2(1-x")" ^("-" 1/2)×(-1)=-1/(2√(1"-" x)) .
答案:D
3.若函数f(x)=3cos(2x+π/3),则f'(π/2)等于( )
A.-3√3 B.3√3 C.-6√3 D.6√3
解析:∵f'(x)=-6sin(2x+π/3),
∴f'(π/2)=-6sin(π+π/3)=6sinπ/3=3√3.
答案:B
4.曲线y=e-2x+1在点(0,2)处的切线与直线y=0和y=x围成的三角形面积为( )
A.1/3 B.1/2 C.2/3 D.1
解析:∵y'=-2e-2x,∴k=-2e0=-2.
因此切线方程为y-2=-2(x-0),即y=-2x+2.
如图所示,∵y=-2x+2与y=x的交点为(2/3 "," 2/3),y=-2x+2与x轴的交点坐标为(1,0),
∴S=1/2×1×2/3=1/3.