2.2 一元二次不等式的应用
第1课时 分式不等式与一元高次不等式
课时过关·能力提升
1.不等式(x"-" 2)/(x+3)≤2的解集是( )
A.{x|x>-3或x<-8} B.{x|x>-3或x≤-8}
C.{x|-3≤x≤2} D.{x|-3 解析:原不等式可化为("(" x"-" 2")-" 2"(" x+3")" )/(x+3)≤0,即("-" x"-" 8)/(x+3)≤0,等价于(x+3)(x+8)≥0,且x+3≠0,解得x>-3或x≤-8. 答案:B 2.不等式x+2/(x+1)>2的解集是( ) A.(-1,0)∪(1,+∞) B.(-∞,-1)∪(0,1) C.(-1,0)∪(0,1) D.(-∞,-1)∪(1,+∞) 解析:x+2/(x+1)>2可化为(x^2 "-" x)/(x+1)>0,等价于x(x-1)(x+1)>0,解得-1 答案:A 3.如图所示为某同学利用穿针引线法解某个不等式时所画的图,则该不等式可能是( ) A.(x+2)(x+1)x(x-1)≥0 B.("(" x+2")(" x"-" 1")" )/("(" x+1")" x)≥0 C.("(" x+1")" x)/("(" x+2")(" x"-" 1")" )≥0 D.("(" x+1")" x)/("(" x+2")(" x"-" 1")" ^2 )≥0 解析:由于图形中有空心点,又有实心点,故只可能是分式不等式,且空心处是分母的根,实心处是分子的根,又x=1处没有穿过,因此它是两重根,故选D. 答案:D 4.不等式(x+5)/("(" x"-" 1")" ^2 )≥2的解集是( ) A.["-" 3"," 1/2] B.["-" 1/2 "," 3] C.[1/2 "," 1)∪(1,3] D.["-" 1/2 "," 1)∪(1,3] 解析:原不等式可化为("(" x+5")-" 2"(" x"-" 1")" ^2)/("(" x"-" 1")" ^2 )≥0,即("(" 2x+1")(-" x+3")" )/("(" x"-" 1")" ^2 )≥0,等价于(2x+1)(-x+3)≥0,且(x-1)2≠0,解得-1/2≤x≤3,且x≠1. 答案:D 5.若不等式f(x)>0的解集为{x|x>2},则不等式f((2x+1)/(3"-" x))>0的解集为( ) A.{x├|x>3"或" x<"-" 1/2┤} B.{x├|"-" 1/2 C.{x├|x>3"或" x<5/4┤} D.{x├|5/4 解析:由题意,可知不等式f((2x+1)/(3"-" x))>0等价于(2x+1)/(3"-" x)>2,整理,得(4x"-" 5)/(3"-" x)>0,解得5/4 答案:D 6.若不等式(2x^2+2mx+m)/(4x^2+6x+3)<1的解集为R,则实数m的取值范围是( ) A.(1,3) B.(-∞,3) C.(-∞,1)∪(2,+∞) D.R