课时分层作业(二十四) 圆的一般方程
(建议用时:60分钟)
[基础达标练]
一、选择题
1.若直线3x+y+a=0过圆x2+y2+2x-4y=0的圆心,则a的值为( )
A.-1 B.1 C.3 D.-3
B [圆的方程可变为(x+1)2+(y-2)2=5,因为直线经过圆的圆心,所以3×(-1)+2+a=0,即a=1.]
2.圆的方程为(x-1)(x+2)+(y-2)(y+4)=0,则圆心坐标为( )
A.(1,-1) B.
C.(-1,2) D.
D [圆的方程(x-1)(x+2)+(y-2)(y+4)=0可化为x2+y2+x+2y-10=0,∴圆心坐标为.]
3.如果圆x2+y2+Dx+Ey+F=0(D2+E2-4F>0)关于直线y=x对称,则有( )
A.D+E=0 B.D=E
C.D=F D.E=F
B [由圆的对称性知,圆心在直线y=x上,故有-=-,即D=E.]
4.如果圆x2+y2+ax+by+c=0(a,b,c不全为零)与y轴相切于原点,那么( )
A.a=0,b≠0,c≠0 B.b=c=0,a≠0
C.a=c=0,b≠0 D.a=b=0,c≠0
B [符合条件的圆方程为+y2=,即x2+y2+ax=0,∴b=0,a≠0,c=0.]
5.设A为圆(x-1)2+y2=1上的动点,PA是圆的切线且|PA|=1,则P点的轨迹方程是( )
A.(x-1)2+y2=4 B.(x-1)2+y2=2
C.y2=2x D.y2=-2x
B [由题意知,圆心(1,0)到P点的距离为,所以点P在以(1,0)为圆心,以为半径的圆上,所以点P的轨迹方程是(x-1)2+y2=2,故选B.]
二、填空题
6.已知圆C:x2+y2-2x+2y-3=0,AB为圆C的一条直径,点A(0,1),则点B的坐标为________.