4 导数的四则运算法则
4.1 导数的加法与减法法则
1.函数y=x2+ex+2的导数为( )
A.y'=2x+ex+2 B.y'=2x+ex
C.y'=2x2+ex D.y'=2x+exlg e
答案:B
2.曲线f(x)=ln x+3x在点(1,f(1))处的切线斜率为( )
A.1 B.2 C.3 D.4
答案:D
3.曲线f(x)=1/√x+x2在(1,f(1))处的切线方程为( )
A.3x+2y+1=0 B.3x+2y-7=0
C.3x-2y+1=0 D.3x-2y-7=0 学 ]
解析:∵f(x)=1/√x+x2=x^("-" 1/2)+x2,
∴f'(x)=(x^("-" 1/2)+x2)'=(x^("-" 1/2))'+(x2)'
=-1/2 x^("-" 3/2)+2x,
∴f'(1)=3/2.
又f(1)=2,∴所求切线的方程为y-2=3/2(x-1),
即3x-2y+1=0.
答案:C
4.函数y=sin x+2cos x+3x的导数为( )
A.y'=cos x+sin x+3 B.y'=cos x-sin x+3
C.y'=cos x-2sin x+3 D.y'=cos x+2sin x+3
解析:∵y=sin x+2cos x+3x=sin x+cos x+cos x+x+x+x,
∴y'=cos x-sin x-sin x+1+1+1=cos x-2sin x+3.
答案:C
5.曲线f(x)=2sin x+x在点(2π/3 "," f(2π/3))处的切线的倾斜角为( )
A.π/6 B.π/3 C.π D.0
解析:∵f'(x)=2cos x+1,∴f'(2π/3)=2cos2π/3+1=0.