4.3 单位圆与正弦函数、余弦函数的基本性质
4.4 单位圆的对称性与诱导公式
A组 基础巩固
1.若函数y=2sin x+a的最大值为-2,则a的值等于0( )
A.2 B.-2
C.0 D.-4
解析由已知得2+a=-2,所以a=-4.
答案D
2.化简(sin"(" π+α")" cos"(" 2π"-" α")" )/cos(π/2+α) 所得的结果是( )
A.sin α B.-sin α
C.cos α D.-cos α
解析原式=("-" sinαcosα)/("-" sinα)=cos α.
答案C
3.已知sin(α"-" π/12)=1/3,则cos(α+17π/12)的值等于( )
A.1/3 B.(2√2)/3
C.-1/3 D.-(2√2)/3
解析由sin(α"-" π/12)=1/3,
则cos(α+17π/12)=cos(α+3π/2 "-" π/12)
=sin(α"-" π/12)=1/3.故选A.
答案A
4.下列四个等式:
①sin(360°+300°)=sin 300°;
②cos(180°-300°)=cos 300°;
③sin(180°+300°)=-sin 300°;
④cos(±300°)=cos 300°.
其中正确的有( )
A.1个 B.2个
C.3个 D.4个
解析①③④均正确,②中cos(180°-300°)=-cos 300°.
答案C
5.设函数f(x)(x∈R)满足f(x+π)=f(x)+sin x.当0≤x<π时,f(x)=0,则f23π/6=( )
A.1/2 B.√3/2
C.0 D.-1/2
解析反复利用f(x+π)=f(x)+sin x,将f23π/6进行转化,再利用诱导公式求值.f23π/6=f17π/6+sin 17π/6=f11π/6+sin 17π/6+sin 11π/6=f5π/6+sin 17π/6+sin 11π/6+sin 5π/6=2sin 5π/6+sin-π/6=1/2.
答案A
6.已知sin(π/2 "-" α)=2/3,则cos(π+α)= .
解析cos(π+α)=-cos α=-sin(π/2 "-" α)=-2/3.