第2课时 导数在实际生活中求最值问题
课时过关·能力提升
1.要做一个圆锥形漏斗,其母线长为20 cm,要使其体积最大,则其高为( )
A.(20√3)/3 cm B.100 cm
C.20 cm D.20/3 cm
解析:设圆锥的高为h cm,则V=1/3π(400-h2)×h,所以V'(h)=1/3π(400-3h2).
令V'(h)=0,得h2=400/3,
所以h=(20√3)/3.故选A.
答案:A
2.已知某生产厂家的年利润y(单位:万元)与年产量x(单位:万件)的函数关系式为y=-1/3x3+81x-234,则使该生产厂家获取最大年利润的年产量为( )
A.13万件 B.11万件 C.9万件 D.7万件
解析:因为y'=-x2+81,所以当x>9时,y'<0;
当x∈(0,9)时,y'>0.
所以,函数y=-1/3x3+81x-234在(9,+∞)上是减少的,在(0,9)上是增加的.
所以x=9是函数的极大值点.
又因为函数在(0,+∞)上只有一个极大值点,所以函数在x=9处取得最大值.
答案:C
3.某公司生产某种产品,固定成本为20 000元,每生产一单位产品,成本增加100元,已知总收益r与年产量x的关系是r={■(400x"-" 1/2 x^2 "," 0≤x≤400"," @80" " 000"," x>400"," )┤则总利润最大时,年产量是( )
A.100 B.150 C.200 D.300
解析:设年产量为x时总利润为y,依题意,得
y={■(400x"-" 1/2 x^2 "-" 20" " 000"-" 100x"," 0≤x≤400"," @80" " 000"-" 20" " 000"-" 100x"," x>400"," )┤
即y={■(300x"-" 1/2 x^2 "-" 20" " 000"," 0≤x≤400"," @60" " 000"-" 100x"," x>400"." )┤
所以y'={■(300"-" x"," 0≤x≤400"," @"-" 100"," x>400"." )┤
由y'=0,得x=300.
经验证,当x=300时,总利润最大.
答案:D
4.若一球的半径为2,则内接于球的圆柱的侧面积最大为0( )
A.2π B.4π C.6π D.8π
解析:设圆柱的底面半径为R,高为h,由h^2/4+R2=4,得h=2√(4"-" R^2 )
S圆柱侧=2πRh=4πR√(4"-" R^2 )
=4π√(R^2 "(" 4"-" R^2 ")" )
令y=R2(4-R2)=4R2-R4,
则y'=8R-4R3=-4R(R2-2),当R>√2时y'<0;
当R<√2时y'>0.