2018-2019学年北师大版选修1-1 3.4 习题课 导数四则运算的应用 作业
2018-2019学年北师大版选修1-1 3.4 习题课 导数四则运算的应用 作业第1页

习题课 导数四则运算的应用

课时过关·能力提升

1.f(x)=2/x-x在(1,1)处的切线方程为(  )

A.2x+3y-5=0

B.y=x+1

C.3x+y-4=0

D.3x-y+4=0

解析:f'(x)=(2/x)'-x'=-2/x^2 -1,

  ∴f'(1)=-3.

  ∴切线方程为y-1=-3(x-1),即3x+y-4=0.

答案:C

2.曲线y=x/(x+2)在点(-1,-1)处的切线方程为(  )

A.y=2x+1 B.y=2x-1

C.y=-2x-3 D.y=-2x+2

解析:∵y=x/(x+2),

  ∴y'=("(" x+2")-" x)/("(" x+2")" ^2 )=2/("(" x+2")" ^2 ).

  斜率k=f'(-1)=2,则切线方程为y+1=2(x+1),即y=2x+1.

答案:A

3.曲线y=sinx/(sinx+cosx)-1/2在点M(π/4 "," 0)处的切线的斜率为(  )

A.-1/2 B.1/2

C.-√2/2 D.√2/2

解析:∵y'=(cosx"(" sinx+cosx")-" sinx"(" cosx"-" sinx")" )/("(" sinx+cosx")" ^2 )

  =1/("(" sinx+cosx")" ^2 ),

  则f'(π/4)=1/2,∴曲线在点M(π/4 "," 0)处的切线的斜率为1/2.

答案:B

4.当函数y=(x^2+a^2)/x(a>0)在x=x0处的导数为0时,x0等于(  )

A.a B.±a

C.-a D.a2

解析:y'=((x^2+a^2)/x)'=(2x"·" x"-(" x^2+a^2 ")" )/x^2 =(x^2 "-" a^2)/x^2 ,由x_0^2-a2=0得x0=±a.

答案:B

5.设函数f(x)=sinθ/3x3+(√3 cosθ)/2x2+tan θ,其中θ∈[0"," 5π/12],则导数f'(1)的取值范围是(  )

A.[-2,2] B.[√2,√3]

C.[√3,2] D.[√2,2]

解析:f'(x)=x2sin θ+√3cos θ x,

  f'(1)=sin θ+√3cos θ=2sin(θ+π/3).

  ∵0≤θ≤5π/12,

  ∴π/3≤θ+π/3≤3π/4.

  由正弦函数图像可知,当θ+π/3=3π/4时,此时f'(1)取最小值√2;

  当θ+π/3=π/2时,此时f'(1)取最大值2.

答案:D