习题课 导数四则运算的应用
课时过关·能力提升
1.f(x)=2/x-x在(1,1)处的切线方程为( )
A.2x+3y-5=0
B.y=x+1
C.3x+y-4=0
D.3x-y+4=0
解析:f'(x)=(2/x)'-x'=-2/x^2 -1,
∴f'(1)=-3.
∴切线方程为y-1=-3(x-1),即3x+y-4=0.
答案:C
2.曲线y=x/(x+2)在点(-1,-1)处的切线方程为( )
A.y=2x+1 B.y=2x-1
C.y=-2x-3 D.y=-2x+2
解析:∵y=x/(x+2),
∴y'=("(" x+2")-" x)/("(" x+2")" ^2 )=2/("(" x+2")" ^2 ).
斜率k=f'(-1)=2,则切线方程为y+1=2(x+1),即y=2x+1.
答案:A
3.曲线y=sinx/(sinx+cosx)-1/2在点M(π/4 "," 0)处的切线的斜率为( )
A.-1/2 B.1/2
C.-√2/2 D.√2/2
解析:∵y'=(cosx"(" sinx+cosx")-" sinx"(" cosx"-" sinx")" )/("(" sinx+cosx")" ^2 )
=1/("(" sinx+cosx")" ^2 ),
则f'(π/4)=1/2,∴曲线在点M(π/4 "," 0)处的切线的斜率为1/2.
答案:B
4.当函数y=(x^2+a^2)/x(a>0)在x=x0处的导数为0时,x0等于( )
A.a B.±a
C.-a D.a2
解析:y'=((x^2+a^2)/x)'=(2x"·" x"-(" x^2+a^2 ")" )/x^2 =(x^2 "-" a^2)/x^2 ,由x_0^2-a2=0得x0=±a.
答案:B
5.设函数f(x)=sinθ/3x3+(√3 cosθ)/2x2+tan θ,其中θ∈[0"," 5π/12],则导数f'(1)的取值范围是( )
A.[-2,2] B.[√2,√3]
C.[√3,2] D.[√2,2]
解析:f'(x)=x2sin θ+√3cos θ x,
f'(1)=sin θ+√3cos θ=2sin(θ+π/3).
∵0≤θ≤5π/12,
∴π/3≤θ+π/3≤3π/4.
由正弦函数图像可知,当θ+π/3=3π/4时,此时f'(1)取最小值√2;
当θ+π/3=π/2时,此时f'(1)取最大值2.
答案:D