第4课时 空间向量的平行、垂直关系
基础达标(水平一 )
1.若平面α,β的法向量分别为a=(1/2 ",-" 1"," 3),b=(-1,2,-6),则( ).
A.α∥β B.α与β相交但不垂直
C.α⊥β D.α∥β或α与β重合
【解析】∵b=-2a,∴b∥a,∴α∥β或α与β重合.
【答案】D
2.已知平面α内有一个点A(2,-1,2),它的一个法向量为n=(3,1,2),则下列点P中,在平面α内的是( ).
A.(1,-1,1) B.(1"," 3"," 3/2)
C.(1",-" 3"," 3/2) D.("-" 1"," 3",-" 3/2)
【解析】对于选项A,(PA) ⃗=(1,0,1),则(PA) ⃗·n=(1,0,1)·(3,1,2)=5≠0,A错误;
对于选项B,(PA) ⃗=(1",-" 4"," 1/2),则(PA) ⃗·n=(1",-" 4"," 1/2)·(3,1,2)=0,B正确;
对于选项C,(PA) ⃗=(1"," 2"," 1/2),则(PA) ⃗·n=(1"," 2"," 1/2)·(3,1,2)=6≠0,C错误;
对于选项D,(PA) ⃗=(3",-" 4"," 7/2),则(PA) ⃗·n=(3",-" 4"," 7/2)·(3,1,2)=12≠0,D错误.故选B.
【答案】B
3.如图,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O为底面中心,A1O⊥平面ABCD,AB=AA1=√2,则平面OCB1的法向量n=(x,y, )为( ).
A.(1,0,1) B.(1,-1,1)
C.(1,0,-1) D.(-1,-1,1)
【解析】∵四边形ABCD是正方形,且AB=√2,
∴AO=OC=1,(OC) ⃗=(0,1,0).
又∵点A(0,-1,0),B(1,0,0),
∴(AB) ⃗=(1,1,0),(A_1 B_1 ) ⃗=(1,1,0).
又∵OA=1,AA1=√2,
∴OA1=√(2"-" 1)=1,
∴(OA_1 ) ⃗=(0,0,1),(OB_1 ) ⃗=(OA_1 ) ⃗+(A_1 B_1 ) ⃗=(1,1,1).
又∵向量n=(x,y, )是平面OCB1的法向量,
∴(OC) ⃗·n=y=0,(OB_1 ) ⃗·n=x+y+ =0,
∴y=0,x=- ,
结合选项可知,当x=1时, =-1,n=(1,0,-1).
故选C.
【答案】C