说明:①表中的Δx是开始追及以后,后面物体因速度大而比前面物体多运动的位移;
②x0是开始追及以前两物体之间的距离;
③t2-t0=t0-t1;
④v1是前面物体的速度,v2是后面物体的速度.
特点归类:
(1)若后者能追上前者,则追上时,两者处于同一位置,后者的速度一定不小于前者的速度.
(2)若后者追不上前者,则当后者的速度与前者相等时,两者相距最近.
1、 相遇问题的常见情况
(1) 同向运动的两物体的相遇问题,即追及问题.
(2) 相向运动的物体,当各自移动的位移大小之和等于开始时两物体的距离时相遇.
解此类问题首先应注意先画示意图,标明数值及物理量;然后注意当被追赶的物体做匀减速运动时,还要注意该物体是否停止运动了.
要点三、追及、相遇问题的解题思路
要点诠释:
追及、相遇问题最基本的特征相同,都是在运动过程中两物体处在同一位置.
①根据对两物体运动过程的分析,画出物体运动情况的示意草图.
②根据两物体的运动性质,分别列出两个物体的位移方程,注意要将两个物体运动时间的关系反映在方程中;
③根据运动草图,结合实际运动情况,找出两个物体的位移关系;
④将以上方程联立为方程组求解,必要时,要对结果进行分析讨论.
要点四、分析追及相遇问题应注意的两个问题
要点诠释:
分析这类问题应注意的两个问题:
(1)一个条件:即两个物体的速度所满足的临界条件,例如两个物体距离最大或距离最小、后面的物体恰好追上前面的物体或恰好追不上前面的物体等情况下,速度所满足的条件.
常见的情形有三种:一是做初速度为零的匀加速直线运动的物体甲,追赶同方向的做匀速直线运动的物体乙,这种情况一定能追上,在追上之前,两物体的速度相等(即)时,两者之间的距离最大;二是做匀速直线运动的物体甲,追赶同方向的做匀加速直线运动的物体乙,这种情况不一定能追上,若能追上,则在相遇位置满足;若追不上,则两者之间有个最小距离,当两物体的速度相等时,距离最小;三是做匀减速直线运动的物体追赶做匀速直线运动的物体,情况和第二种情况相似.
(2)两个关系:即两个运动物体的时间关系和位移关系.其中通过画草图找到两个物体位移之间的数值关系