因为∠BAC=90°,且O为BC的中点,所以AO=a/2.
又PA=a,所以PO2+OA2=PA2,所以PO⊥AO.又PO⊥BC,且AO∩BC=O,所以PO⊥平面ABC,即∠PAO为PA与底面ABC所成的角.
所以cos∠PAO=1/2,所以∠PAO=60°.
答案:60°
8.△ABC和△DBC所在的平面相互垂直,且AB=BC=BD,∠CBA=∠DBC=120°,则AD和平面BCD所成的角为 .
解析:设AB=1,作AO⊥BC于点O,连接DO.
由∠CBA=∠DBC=120°,
∴∠ABO=∠DBO=60°,
∴OB=1/2.
在△BOD中,∵BD=AB=1,OB=1/2,∠DBO=60°,
∴△BOD为直角三角形,∴DO⊥OB.
又∵平面ABC⊥平面DBC,
∴AO⊥平面DBC,
∴AO⊥DO,故以点O为原点,(OD) ⃗,(OC) ⃗,(OA) ⃗的方向分别为x轴、y轴、z轴的正方向,建立空间直角坐标系,如图,得下列坐标:O(0,0,0),D(√3/2 "," 0"," 0),B(0"," 1/2 "," 0),C(0"," 3/2 "," 0),A(0"," 0"," √3/2),
∴(AD) ⃗=(√3/2 "," 0",-" √3/2).
设n1=(x,y,z)为平面BCD的法向量,则
{■(n_1 "·" (BC) ⃗=y=0"," @n_1 "·" (CD) ⃗=√3/2 x"-" 3/2 y=0"," )┤故可取n1=(0,0,1).
则|cos<(AD) ⃗,n1>|=|("-" √3/2)/(√6/2×1)|=|"-" √2/2|=√2/2,
∴<(AD) ⃗,n1>=45°.
∴直线AD与平面BCD所成角的大小为90°-45°=45°.
答案:45°
★9.在正方体ABCD-A1B1C1D1中,点O为线段BD的中点.设点P在线段CC1上,直线OP与平面A1BD所成角的正弦值的取值范围是 .