①若p真q假,则{■("-" 2 ②若p假q真,则{■(a≤"-" 2"或" a≥2"," @a<2"," )┤解得a≤-2. 综上所述,所求实数a的取值范围为(-∞,-2]. ★11.已知p:|1"-" (x"-" 1)/3|≤2,q:x2-2x+1-m2≤0(m>0),若p是q的充分不必要条件,求实数m的取值范围. 解由|1"-" (x"-" 1)/3|≤2,得-2≤x≤10, ∴p:A={x|x>10或x<-2}. 由x2-2x+1-m2≤0,得1-m≤x≤1+m(m>0), ∴q:B={x|x>1+m或x<1-m}(m>0). ∵p是q的充分不必要条件, ∴A⫋B. ∴{■(m>0"," @1+m<10"," @1"-" m≥"-" 2)┤或{■(m>0"," @1+m≤10"," @1"-" m>"-" 2"," )┤ 解得0 故实数m的取值范围是(0,3]. ★12.已知a>0,且a≠1,设p:函数y=loga(x+1)在(0,+∞)内是减少的;q:曲线y=x2+(2a-3)x+1与x轴交于不同的两点.如果p和q有且只有一个为真命题,求实数a的取值范围. 分析利用对数函数与二次函数的单调性及简易逻辑,结合分类讨论的数学思想解答该题. 解当01时,y=loga(x+1)在(0,+∞)内是增加的. 曲线y=x2+(2a-3)x+1与x轴交于不同的两点等价于(2a-3)2-4>0,即a<1/2 或a>5/2. (1)若p为真命题,q为假命题,则函数y=loga(x+1)在(0,+∞)内是减少的,曲线y=x2+(2a-3)x+1与x轴不交于两点, 所以a∈(0,1)∩([1/2 "," 1)⋃(1"," 5/2]), 即a∈[1/2 "," 1). (2)若p为假命题,q为真命题,则函数y=loga(x+1)在(0,+∞)内不是减少的,曲线y=x2+(2a-3)x+1与x轴交于不同的两点, 所以a∈(1,+∞)∩((0"," 1/2)⋃(5/2 "," +"∞" )),即a∈(5/2 "," +"∞" ). 综上所述,实数a的取值范围是[1/2 "," 1)∪(5/2 "," +"∞" ).