计算应在前)。 单位"1"×分率=比较量 ; 比较量÷分率=单位"1"
(10).单位"1"不同的两个分率不能相加减,解应用题时应把题中的不变量做为单位"1",统一分率的单位"1",然后再相加减。
(11).单位"1"的特点: ①单位"1"为分母; ②单位"1"为不变量。
(12)分率与量要对应。
①多的对应量对多的分率;
②少的对应量对少的分率;
③增加的对应量对增加的分率;
④减少的对应量对减少的分率;
⑤提高的对应量对提高的分率;
⑥降低的对应量对降低的分率;
⑦工作总量的对应量对工作总量的分率;
⑧工作效率的对应量对工作效率的分率;
⑨部分的对应量对部分的分率;
⑩总量的对应量对总量的分率;
例如:1、求一个数的几分之几是多少?(求一个数的几分之几用乘法计算)
方法:单位"1"的数量×对应分率=对应数量。
2、分数的连乘。找到每一个分率的单位"1"。
(五)、倒数
1、倒数:乘积是1的两个数互为倒数。
2、求倒数的方法:把这个数写成分数形式,然后将分子和分母交换位置。
3、0没有倒数,1的倒数是它本身。
4、真分数的倒数都大于它本身,假分数的倒数等于或小于它本身。
注意:倒数必须是成对的两个数,单独的一个数不能称做倒数。
位置
1、行和列的意义:竖排叫做列,横排叫做行。
2、数对可以表示物体的位置,也可以确定物体的位置。
3、数对表示位置的方法:先表示列,再表示行。用括号把代表列和行的数字或字母括起来,再用逗号隔开。例如:(7,9)表示第七列第九行。
4、两个数对,前一个数相同,说明它们所表示物体位置在同一列上。如:(2,4)和(2,7)都在第2列上。
5、两个数对,后一个数相同,说明它们所表示物体位置在同一行上。如:(3,6)和(1,6)都在第6行上。
6、物体向左、右平移,行数不变,列数减去或加上平移的各数。
物体向上、下平移,列数不变,行数减去或加上平移的各数。
分数除法
(一)、分数除法的意义:
分数除法的意义:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
例如: 表示:已知两个数的积是 ,与其中一个因数 ,求另一个因数是多少。
÷4表示已知两个数的积是 ,与其中一个因数4,求另一个因数是多少。还表示把平均分成4份,每份是多少。