答案:
解析:原式=++
=++
=+cos2A+2coscos2A
=+=.
三、解答题:(共35分,11+12+12)
10.已知tanα=,tanβ=,且α,β均为锐角,求α+2β的值.
解析:tan2β==,
tan(α+2β)==1.
因为α,β均为锐角,且tanα=<1,tanβ=<1,
所以α,β∈,所以α+2β∈,
所以α+2β=.
11.已知函数f(x)=2cos2x+4sincoscosx.
(1)求函数f(x)的最小正周期;
(2)求函数f(x)在区间上的值域.
解析:(1)f(x)=2cos2x+4sincoscosx
=2cos2x+2sinxcosx
=cos2x+1+sin2x
=2sin+1,
所以函数f(x)的最小正周期T==π.
(2)因为x∈,所以2x+∈,
所以sin∈,
所以f(x)的值域为[0,3].
12.已知函数f(x)=2cos,x∈R.
(1)求f(π)的值;
(2)若f=,α∈,求f(2α)的值.
解析:(1)f(π)=2cos=-2cos=-2×=-.