【解析】选B.由题意f'(x)=3x2+2x-a,函数开口向上,对称轴为x=-1/3,若函数f(x)在区间(-1,1)内恰有一个极值点,则
即{■(3"-" 2"-" a≤0"," @3+2"-" a>0"," )┤解得1≤a<3.
二、填空题(每小题5分,共15分)
4.已知函数f(x)=aln 2x+bx在x=1处取得最大值ln 2-1,则a= , b= .
【解析】f'(x)=a/x+b=(a+bx)/x(x>0),
当f'(x)=0时,x=-a/b,当x=1时,函数取得最大值ln 2-1,即{■("-" a/b=1"," @aln2+b=ln2"-" 1"," )┤解得a=1,b=-1.
答案:1 -1
5.(2019·海珠模拟)已知函数f(x)=5sin x-12cos x,当x=x0时,f(x)有最大值13,则tan x0= .
【解析】f(x)=5sinx-12cosx=13sin(x-θ)(cosθ=5/13,sinθ=12/13)
当x=x0时f(x)有最大值13,
所以x0-θ=π/2+2kπ,k∈Z所以x0=θ+π/2+2kπ,
tanx0=tan(θ+π/2+2kπ)=tan(θ+π/2)=1/("-" tanθ)=cosθ/("-" sinθ)=-5/12.
答案:-5/12