当x<0时,f′(x)<0,
当0
故x=0时,函数f(x)取到极小值f(0)=c.
【答案】 c
三、解答题
9.设a为实数,函数f(x)=ex-2x+2a,x∈R,求f(x)的单调区间与极值.
【解】 由f(x)=ex-2x+2a,x∈R,知f′(x)=ex-2,x∈R.
令f′(x)=0,得x=ln 2.于是当x变化时,f′(x),f(x)的变化情况如下表:
x (-∞,ln 2) ln 2 (ln 2,+∞) f′(x) - 0 + f(x) ↘ 2(1-ln 2+a) ↗ 故f(x)的单调递减区间是(-∞,ln 2),单调递增区间是(ln 2,+∞).
所以f(x)在x=ln 2处取得极小值,极小值为f(ln 2)=eln 2-2ln 2+2a=2(1-ln 2+a).
10.已知f(x)=x3+bx2+cx+2.
(1)若f(x)在x=1时有极值-1,求b,c的值;
(2)在(1)的条件下,若函数y=f(x)的图象与函数y=k的图象恰有三个不同的交点,求实数k的取值范围.
【导学号:97792108】
【解】 (1)因为f(x)=x3+bx2+cx+2,
所以f′(x)=3x2+2bx+c.
由已知,得f′(1)=0,f(1)=-1,
所以解得b=1,c=-5.