2019-2020学年人教A版选修4-5 1.1.3 三个正数的算术-几何平均不等式 作业
2019-2020学年人教A版选修4-5 1.1.3 三个正数的算术-几何平均不等式 作业第3页

答案3

9.已知实数a,b,c∈R,a+b+c=1,求4a+4b+4^(c^2 )的最小值,并求出取最小值时a,b,c的值.

解由三个正数的算术-几何平均不等式,得4a+4b+4^(c^2 )≥3∛(4^a "·" 4^b "·" 4^(c^2 ) )=3∛(4^(a+b+c^2 ) )(当且仅当a=b=c2时,等号成立).

  ∵a+b+c=1,

  ∴a+b=1-c.

  则a+b+c2=c2-c+1=(c"-" 1/2)^2+3/4,当c=1/2时,a+b+c2取得最小值3/4.

  从而当a=b=1/4,c=1/2时,4a+4b+4^(c^2 )取最小值,最小值为3√2.

10.导学号26394008已知x,y均为正数,且x>y,求证2x+1/(x^2 "-" 2xy+y^2 )≥2y+3.

证明因为x>0,y>0,x-y>0,所以2x+1/(x^2 "-" 2xy+y^2 )-2y

  =2(x-y)+1/("(" x"-" y")" ^2 )=(x-y)+(x-y)+1/("(" x"-" y")" ^2 )

  ≥3∛("(" x"-" y")·(" x"-" y")·" 1/("(" x"-" y")" ^2 ))=3,

  所以2x+1/(x^2 "-" 2xy+y^2 )

  ≥2y+3(" " /" " "当且仅当" x"-" y=1/("(" x"-" y")" ^2 ) "时,等号成立" ).

B组

1.若logxy=-2,则x+y的最小值为(  )

A.(3∛2)/2 B.(2∛3)/3 C.(3√3)/2 D.(2√2)/3

解析由logxy=-2得y=1/x^2 ,因此x+y=x+1/x^2 =x/2+x/2+1/x^2 ≥3∛(x/2 "·" x/2 "·" 1/x^2 )=(3∛2)/2 ("当且仅当" x/2=1/x^2 ",即" ┤

├ x=∛2 "时,等号成立" ).

答案A

2.设x>0,则f(x)=4-x-1/(2x^2 )的最大值为(  )

A.4-√2/2 B.4-√2 C.不存在 D.5/2

解析∵x>0,

  ∴f(x)=4-x-1/(2x^2 )=4-(x/2+x/2+1/(2x^2 ))

≤4-3∛(x/2 "·" x/2 "·" 1/(2x^2 ))=4-3/2=5/2