2018-2019学年北师大版必修一 3.5.1 对数函数的概念 作业
2018-2019学年北师大版必修一 3.5.1 对数函数的概念 作业第2页

答案:B

5设f(x)=logax(a>0,a≠1),对于任意的正实数x,y都有(  )

A.f(xy)=f(x)f(y) B.f(x+y)=f(x)f(y)

C.f(x+y)=f(x)+f(y) D.f(xy)=f(x)+f(y)

解析:因为f(x)=logax(a>0,a≠1),

  所以f(xy)=loga(xy).

  又f(x)+f(y)=logax+logay=loga(xy),

  所以f(xy)=f(x)+f(y).

答案:D

6对数函数f(x)满足f(9)=2,则f(3)=(  )

A.0 B.1 C.3 D.4

解析:设对数函数为f(x)=logax,所以2=loga9.

  所以a=3.所以解析式为y=log3x.

  所以f(3)=log33=1.

答案:B

7已知f(x)=log3x,则f(8/27)+f(3/8)=     .

解析:f(8/27)+f(3/8)=log38/27+log33/8

  =log3(8/27×3/8)=log31/9=-2.

答案:-2

8若f(x)={■((1/2)^x "," x"∈(-∞," 1"]," @log_81 x"," x"∈(" 1"," +"∞)," )┤则满足f(x)=1/4的x的值为     .

解析:因为当x≤1时,f(x)=(1/2)^x=1/4,解得x=2,舍去.

  当x∈(1,+∞)时,log81x=1/4,解得x=∜81=3.

答案:3

9函数f(x)=(lg"(" 4"-" x")" )/(x"-" 3)的定义域为 .

解析:由{■(4"-" x>0"," @x"-" 3≠0"," )┤解得x<4且x≠3,

  所以定义域为{x|x<4且x≠3}.

答案:{x|x<4且x≠3}

★10若函数y=log2["(" a"-" 1")" x^2+2x+1/4]的定义域为R,求实数a的取值范围.

解由题意得,(a-1)x2+2x+1/4>0在R上恒成立,

当a=1时,显然不成立,所以a≠1,