z_1^2=(a2-b2)+2abi,z_2^2=(c2-d2)+2cdi,在a2+b2=c2+d2的条件下,不能保证a2-b2=c2-d2,2ab=2cd,故D错误.
答案:D
2.定义运算|■(a" " b@c" " d)|=ad-bc,则符合条件|■(1" -" 1@z" " zi)|=4+2i的复数z为( )
A.3-i B.1+3i C.3+i D.1-3i
解析:|■(1" -" 1@z" " zi)|=zi+z=z(1+i)=4+2i,
∴z=(4+2i)/(1+i)=("(" 4+2i")(" 1"-" i")" )/2=(4+2"-" 2i)/2=3-i.
答案:A
3.导学号88184073已知复数z=x+yi(x,y∈R),且|z-2|=√3,则y/x的最大值为 .
解析:|z-2|=√("(" x"-" 2")" ^2+y^2 )=√3,∴(x-2)2+y2=3.
如图所示,故(y/x)_max=√3/1=√3.
答案:√3
4.若关于x的方程x2+(1+2i)x-(3m-1)i=0有实根,则纯虚数m= .
解析:设m=bi(b∈R且b≠0),x0为一实根,由题意得x_0^2+(1+2i)x0-(3bi-1)i=0,
∴(x_0^2+x0+3b)+(2x0+1)i=0,
∴{■(x_0^2+x_0+3b=0"," @2x_0+1=0"," )┤解得{■(x_0="-" 1/2 "," @b=1/12 "," )┤
∴m=1/12i.
答案:1/12i
5.导学号88184074复数z和w满足zw+2iz-2iw+1=0,其中i为虚数单位.
(1)若z和w又满足¯w-z=2i,求z和w的值;
(2)求证:如果|z|=√3,那么|w-4i|的值是一个常数,并求这个常数.
解(1)设z=a+bi,w=c+di(a,b,c,d∈R),
由zw+2iz-2iw+1=0得
(a+bi)(c+di)+2i(a+bi)-2i(c+di)+1=0,
即(ac-bd-2b+2d+1)+(ad+bc+2a-2c)i=0.
∴{■(ac"-" bd"-" 2b+2d+1=0", ①" @ad+bc+2a"-" 2c=0". ②" )┤
又¯w-z=2i,∴c-di-(a+bi)=2i.
即(c-a)-(b+d)=2i.
∴{■(c"-" a=0", ③" @b+d="-" 2". ④" )┤