综上,|a-b|=2或2.
10.在平面直角坐标系xOy中,已知点A(1,4),B(-2,3),C(2,-1).
(1)求·及|+|;
(2)设实数t满足(-t)⊥,求t的值.
解:(1)∵=(-3,-1),=(1,-5),
∴·=-3×1+(-1)×(-5)=2.
∵+=(-2,-6),
∴|+|==2.
(2)∵-t=(-3-2t,-1+t),=(2,-1),且(-t)⊥,
∴(-t)·=0,
∴(-3-2t)×2+(-1+t)·(-1)=0,
∴t=-1.
层级二 应试能力达标
1.设向量a=(1,0),b=,则下列结论中正确的是( )
A.|a|=|b| B.a·b=
C.a-b与b垂直 D.a∥b
解析:选C 由题意知|a|==1,|b|==,a·b=1×+0×=,(a-b)·b=a·b-|b|2=-=0,
故a-b与b垂直.
2.已知向量=(2,2),=(4,1),在x轴上有一点P,使·有最小值,则点P的坐标是( )
A.(-3,0) B.(2,0)
C.(3,0) D.(4,0)
解析:选C 设P(x,0),则=(x-2,-2),=(x-4,-1),
∴·=(x-2)(x-4)+2=x2-6x+10=(x-3)2+1,
故当x=3时,·最小,此时点P的坐标为(3,0).
3.若a=(x,2),b=(-3,5),且a与b的夹角是钝角,则实数x的取值范围是( )
A. B.