6.解析:綈p:函数f(x)=x2+2(a-1)x+2在区间(-∞,4]上不是减函数.
∵綈p为假,则p为真,
即函数在(-∞,4]上为减函数,
∴-(a-1)≥4,即a≤-3,
∴a的取值范围是(-∞,-3].
答案:(-∞,-3]
7.解:(1)两次都击中飞机表示:第一次击中飞机且第二次击中飞机,所以命题s表示为p且q.
(2)两次都没击中飞机表示:第一次没有击中飞机且第二次没有击中飞机,所以命题r表示为綈p且綈q.
(3)恰有一次击中了飞机包含两种情况:一是第一次击中飞机且第二次没有击中飞机,此时表示为 p且綈q,二是第一次没有击中飞机且第二次击中飞机,此时表示为綈p且q,所以命题t表示为( p且綈q)或(綈p且q).
(4)法一:命题u表示:第一次击中飞机或第二次击中飞机,所以命题u表示为p或q.
法二:綈u:两次都没击中飞机,即是命题r,所以命题u是綈r,从而命题u表示为綈(綈p且綈q).
法三:命题u表示:第一次击中飞机且第二次没有击中飞机,或者第一次没有击中飞机且第二次击中飞机,或者第一次击中飞机且第二次击中飞机,所以命题u表示为(p且綈q)或(綈p且q)或(p且q).
8.解:由"p或q"是真命题,"p且q"是假命题可知p,q一真一假.
p为真命题时,Δ=a2-16≥0,
∴a≥4或a≤-4;
q为真命题时,对称轴x=-≤3,
∴a≥-12.
当p真q假时,得a<-12;