2018-2019学年人教A版选修2-2 2.1.2 演绎推理 (2) 课时作业
2018-2019学年人教A版选修2-2     2.1.2 演绎推理 (2)        课时作业第3页

B.小前提错误导致结论错误

C.推理形式错误导致结论错误

D.大前提和小前提都错误导致结论错误

解析此推理形式正确,但大前提是错误的(因为当0

答案A

3f(x)是定义在(0,+∞)内的非负可导函数,且满足xf'(x)+f(x)<0.对任意的正数a,b,若a

A.bf(a)

C.af(a)

解析构造函数F(x)=xf(x),

  则F'(x)=xf'(x)+f(x).

  由题设条件知F(x)=xf(x)在(0,+∞)上单调递减.

  若aF(b),即af(a)>bf(b).

  又f(x)是定义在(0,+∞)上的非负可导函数,

  所以bf(a)>af(a)>bf(b)>af(b).故选B.

答案B

4设函数f(x)是定义在R上的奇函数,且y=f(x)的图象关于直线x=1/2对称,则f(1)+f(2)+f(3)+f(4)+f(5)=     .

解析f(0)=0,f(1)=f(0)=0,f(2)=f(-1)=0,f(3)=f(-2)=0,f(4)=f(-3)=0,f(5)=f(-4)=0,则f(1)+f(2)+f(3)+f(4)+f(5)=0.

答案0

★5设f(x)=(x-a)(x-b)(x-c)(a,b,c是两两不相等的常数),则a/(f"'(" a")" )+b/(f"'(" b")" )+c/(f"'(" c")" )的值是     .

解析∵f'(x)=(x-b)(x-c)+(x-a)(x-c)+(x-a)(x-b),

  ∴f'(a)=(a-b)(a-c),

  f'(b)=(b-a)·(b-c),

  f'(c)=(c-a)(c-b),

  ∴a/(f"'(" a")" )+b/(f"'(" b")" )+c/(f"'(" c")" )

  =a/("(" a"-" b")(" a"-" c")" )+b/("(" b"-" a")(" b"-" c")" )+c/("(" c"-" a")(" c"-" b")" )

  =(a"(" b"-" c")-" b"(" a"-" c")" +c"(" a"-" b")" )/("(" a"-" b")(" a"-" c")(" b"-" c")" )=0.

答案0

6已知f(x)=x(1/(2^x "-" 1)+1/2),求证:f(x)是偶函数.

证明f(x)=x·(2^x+1)/(2"(" 2^x "-" 1")" ),其定义域为{x|x≠0},