第2课时 抛物线的简单性质习题课
1.过点P(2,-4)与抛物线y2=8x只有一个公共点的直线有( )
A.1条 B.2条
C.3条 D.1条、2条或3条
解析:∵点P在抛物线上,故有两条直线:一条切线,一条平行于x轴的交线.
答案:B
2.抛物线x2=1/4 y上一点到直线y=4x-5的距离最短,则该点的坐标为( )
A.(0,0) B.(1,4)
C.(1/2 "," 1)D.(5,1)
解析:(方法一)设抛物线上一点P(x0,4x_0^2),它到直线的距离d=("|" 4x_0 "-" 4x_0^2 "-" 5"|" )/√17=(4x_0^2 "-" 4x_0+5)/√17,而4x_0^2-4x0+5=(2x0-1)2+4≥4,当且仅当x0=1/2 时取等号,∴该点坐标为(1/2 "," 1).
(方法二)设与y=4x-5平行的直线方程为y=4x+b,代入x2=1/4 y,得4x2-4x-b=0.0(*)
由Δ=0,得16+16b=0,即b=-1.
∴方程(*)为4x2-4x+1=0,∴x=1/2.
∴y=4×1/4=1,
∴所求点坐标为(1/2 "," 1).
答案:C
3.已知抛物线C:y2=4x的焦点为F,直线y=2x-4与C交于A,B两点,则cos∠AFB=( )
A. 4/5 B.3/5 C.-3/5 D.-4/5
解析:由{■(y=2x"-" 4"," @y^2=4x"," )┤得{■(x=1"," @y="-" 2)┤或{■(x=4"," @y=4"." )┤
令B(1,-2),A(4,4),又F(1,0),∴由两点间距离公式得|BF|=2,|AF|=5,|AB|=3√5.
∴cos∠AFB=("|" BF"|" ^2+"|" AF"|" ^2 "-|" AB"|" ^2)/(2"|" BF"|·|" AF"|" )
=(4+25"-" 45)/(2×2×5)=-4/5.
答案:D