答案:0
8.若函数f(x)=x3-3x-a在区间[0,3]上的最大值、最小值分别为m,n,则m-n=________.
解析:∵f′(x)=3x2-3,
∴当x>1或x<-1时,f′(x)>0;
当-1<x<1时,f′(x)<0.
∴f(x)在[0,1]上单调递减,在[1,3]上单调递增.
∴f(x)min=f(1)=1-3-a=-2-a=n.
又∵f(0)=-a,f(3)=18-a,∴f(0)<f(3).
∴f(x)max=f(3)=18-a=m,
∴m-n=18-a-(-2-a)=20.
答案:20
9.已知k为实数,f(x)=(x2-4)(x+k).
(1)求导函数f′(x);
(2)若x=-1是函数f(x)的极值点,求f(x)在区间[-2,2]上的最大值和最小值.
解:(1)∵f(x)=x3+kx2-4x-4k,
∴f′(x)=3x2+2kx-4.
(2)由f′(-1)=0,得k=-.
∴f(x)=x3-x2-4x+2,f′(x)=3x2-x-4.
由f′(x)=0,得x=-1或x=.
又f(-2)=0,f(-1)=,f=-,f(2)=0,
∴f(x)在区间[-2,2]上的最大值为,最小值为-.
10.已知函数f(x)=x3+ax2+bx+5,曲线y=f(x)在点P(1,f(1))处的切线方程为y=3x+1.
(1)求a,b的值;
(2)求y=f(x)在[-3,1]上的最大值.
解:(1)依题意可知点P(1,f(1))为切点,代入切线方程y=3x+1可得,f(1)=3×1+