【解析】如图,建立空间直角坐标系,设PA=AB=1,则点A(0,0,0),D(0,1,0),P(0,0,1).∴(AD) ⃗=(0,1,0).取PD的中点E,则点E(0"," 1/2 "," 1/2),∴(AE) ⃗=(0"," 1/2 "," 1/2).
易知(AD) ⃗是平面PAB的法向量,(AE) ⃗是平面PCD的法向量,
∴cos<(AD) ⃗,(AE) ⃗>=((AD) ⃗"·" (AE) ⃗)/("|" (AD) ⃗" " (AE) ⃗"|" )=√2/2,
∴平面PAB与平面PCD的夹角为45°.
【答案】B
5.如图,A1B1C1-ABC是直三棱柱,∠BCA=90°,D1,F1分别是A1B1,A1C1的中点,若BC=CA=CC1,则D1B与AF1夹角的余弦值是.
【解析】
建立如图所示的空间直角坐标系,设BC=CA=CC1=2,所以点A(2,0,0),B(0,2,0),因为D1,F1分别为A1B1,A1C1的中点,所以点D1(1,1,2),F1(1,0,2),所以(D_1 B) ⃗=(-1,1,-2),(AF_1 ) ⃗=(-1,0,2),
所以(D_1 B) ⃗·(AF_1 ) ⃗=(-1,1,-2)·(-1,0,2)=-3,|(D_1 B) ⃗|=√(1+1+4)=√6,|(AF_1 ) ⃗|=√(1+4)=√5,
所以|cos<(D_1 B) ⃗,(AF_1 ) ⃗>|=3/(√6×√5)=√30/10.
所以异面直线D1B与AF1的夹角的余弦值为√30/10.
【答案】√30/10
6.在空间中,已知平面α过点(3,0,0)和(0,4,0)及 轴上一点(0,0,a)(a>0),若平面α与平面xOy的夹角为45°,则a=.
【解析】平面xOy的一个法向量为n=(0,0,1),
设平面α的法向量为u=(x,y, ),
则{■("-" 3x+4y=0"," @"-" 3x+az=0"," )┤故3x=4y=a ,
取 =1,则u=(a/3 "," a/4 "," 1),
|cos
因为a>0,所以a=12/5.
【答案】12/5