(1)证明:\s\up14(→(→)=\s\up14(→(→)+\s\up14(→(→),\s\up14(→(→)=\s\up14(→(→)+\s\up14(→(→).
因为BB1⊥平面ABC,
所以\s\up14(→(→)·\s\up14(→(→)=0,\s\up14(→(→)·\s\up14(→(→)=0.
又△ABC为正三角形,
所以〈\s\up14(→(→),\s\up14(→(→)〉=π-〈\s\up14(→(→),\s\up14(→(→)〉=π-=.
因为\s\up14(→(→)·\s\up14(→(→)=(\s\up14(→(→)+\s\up14(→(→))·(\s\up14(→(→)+\s\up14(→(→))=\s\up14(→(→)·\s\up14(→(→)+\s\up14(→(→)·\s\up14(→(→)+\s\up14(→(→)2+\s\up14(→(→)·\s\up14(→(→)=|\s\up14(→(→)|·|\s\up14(→(→)|·cos〈\s\up14(→(→)·\s\up14(→(→)〉+\s\up14(→(→)2=-1+1=0,
所以AB1⊥BC1.
(2)解:结合(1)知\s\up14(→(→)·\s\up14(→(→)=|\s\up14(→(→)|·|\s\up14(→(→)|·cos〈\s\up14(→(→),\s\up14(→(→)〉+\s\up14(→(→)2=
\s\up14(→(→)2-1.
又|\s\up14(→(→)|= \s\up14(→((\o(AB,\s\up14(→)= \s\up14(→(2+\o(BB1,\s\up14(→)=|\s\up14(→(→)|,
所以cos〈\s\up14(→(→),\s\up14(→(→)〉=\s\up14(→(BB1,\s\up14(→)=.
所以|\s\up14(→(→)|=2,即侧棱长为2.
B级 能力提升
1.已知空间向量a,b,c,两两夹角为60°,其模都为1,则|a-b+2c|=( )
A. B.5 C.6 D.
解析:因为|a|=|b|=|c|=1,〈a,b〉=〈b,c〉=〈c,a〉=60°,
所以a·b=b·c=a·c=,a2=b2=c2=1.
所以|a-b+2c|=