答案:
6.解析:抛物线y2=2px(p>0)的准线为x=-,因为P(6,y)为抛物线上的点,所以P到焦点F的距离等于它到准线的距离,所以6+=8,所以p=4,故焦点F到抛物线准线的距离等于4.
答案:4
7.解:(1)直线2x-y+5=0与坐标轴的交点为,(0,5),以此两点为焦点的抛物线方程分别为y2=-10x,x2=20y.
其对应准线方程分别是x=,y=-5.
(2)抛物线方程即为x2=-y,焦点为,准线方程:y=.
(3)抛物线方程即为x2=y(m≠0),焦点为,准线方程y=-.
8.解:(1)抛物线y2=2px的准线为x=-,
于是,4+=5,p=2.
所以抛物线方程为y2=4x.
(2)因为点A的坐标是(4,4),
由题意得B(0,4),M(0,2).
又F(1,0),所以kAF=.
因为MN⊥FA,所以kMN=-.
则FA的方程为y=(x-1),
MN的方程为y=-x+2.