2017-2018学年人教A版必修3 3.1.3概率的基本性质 课时作业
2017-2018学年人教A版必修3  3.1.3概率的基本性质 课时作业第3页

答案 

解析 事件"至少取到1瓶已过保质期的饮料"与事件"没有取到已过保质期的饮料"是对立事件,根据对立事件的概率公式得P=1-=.

9.抛掷一枚骰子两次,若至少有一个1点或2点的概率为,则没有1点或2点的概率是________.

答案 

解析 记事件A为"没有1点或2点",B为"至少有一个1点或2点",则A与B是互斥事件,且A与B是对立事件,故P(A)=1-P(B)=1-=.

10.给出四对事件:①某人射击1次,"射中7环"与"射中8环";②甲、乙两人各射击1次,"甲射中7环"与"乙射中8环";③甲、乙两人各射击1次,"两人均射中目标"与 "两人均没有射中目标";④甲、乙两人各射击1次,"至少有1人射中目标"与"甲射中目标,但乙未射中目标".其中是互斥事件的有________对.

答案 2

解析 某人射击1次,"射中7环"与"射中8环"这两个事件不可能同时发生,故①是互斥事件;甲、乙两人各射击1次,"甲射中7环"与"乙射中8环"可能同时发生,故②不是互斥事件;甲、乙两人各射击1次,"两人均射中目标"与"两人均没有射中目标"这两个事件不可能同时发生,故③是互斥事件;甲、乙两人各射击1次,"至少有1人射中目标"与"甲射中目标,但乙未射中目标",前者包含后者,故④不是互斥事件.综上可知,①③是互斥事件,故共有2对事件是互斥事件.

三、解答题

11.根据以往的成绩记录,某队员击中目标靶的环数的频率分布情况如图所示: