∴S=[1-m,1+m].
要使P⊆S,则
∴∴m≥9,
∴实数m的取值范围是{m|m≥9}.
(2)由题意x∈P是x∈S的必要条件,则S⊆P.
由|x-1|≤m,可得1-m≤x≤m+1,
要使S⊆P,则∴m≤3.
∴实数m的取值范围是{m|m≤3}.
4.设函数f(x)=x2-2x+3,g(x)=x2-x.
(1)解不等式|f(x)-g(x)|≥2 014;
(2)若|f(x)-a|<2恒成立的充分条件是1≤x≤2,求实数a的取值范围.
解:(1)由|f(x)-g(x)|≥2 014得|-x+3|≥2 014,即|x-3|≥2 014,所以x-3≥2 014或x-3≤-2 014,解得x≥2 017或x≤-2 011.
(2)依题意知:当1≤x≤2时,|f(x)-a|<2恒成立,所以当1≤x≤2时,-2<f(x)-a<2恒成立,即f(x)-2<a<f(x)+2恒成立.
由于当1≤x≤2时,f(x)=x2-2x+3=(x-1)2+2的最大值为3,最小值为2,因此3-2<a<2+2,即1<a<4,所以实数a的取值范围是(1,4).