A.1
B.1/2
C.√2/2
D.1/3
【解析】S=∫_0^1 √x "-" x^2 ")" dx=(2/3 x^(3/2) "-" x^3/3)|■( ^1@ _0 )┤=1/3.
【答案】D
5.一物体在力F(x)=3x2-2x+5(力单位:N,位移单位:m)作用力下,沿与力F(x)相同的方向由x=5 m直线运动到x=10 m处所做的功是 .
【解析】W=∫_5^10▒ F(x)dx=∫_5^10▒ (3x2-2x+5)dx
=(x3-x2+5x)|〖 ^10〗_5 ┤
=(1000-100+50)-(125-25+25)=825 J.
【答案】825 J
6.曲线xy=1与直线y=x和y=3所围成的平面图形的面积为 .
【解析】由xy=1得y=1/x.由y=1/x=3,解得xB=1/3,由{■(xy=1"," @y=x"," )┤解得xC=1,由{■(y=3"," @y=x"," )┤得xD=3.所以根据积分的几何意义知所求面积为∫_(1/3)^1 (3"-" 1/x)dx+∫_1^3▒ (3-x)dx=(3x-ln x) _(1/3)^1+(3x"-" 1/2 x^2 ) _1^3=4+ln1/3=4-ln 3.
【答案】4-ln 3
7.有一动点P,在时间t时的速度为v(t)=8t-2t2,求:
(1)当t=5时,点P距出发点的位置;
(2)当t=0到t=5时,点P经过的路程.
【解析】(1)s=∫_0^5▒ (8t-2t2)dt=(4t^2 "-" 2/3 t^3 ) _0^5=50/3.
(2)当v(t)=8t-2t2≥0,即当0≤t≤4时,点P向x轴正方向运动;当t>4时,点P向x轴负方向运动.因此所求路程应为s2=∫_0^4▒ (8t-2t2)dt+∫_4^5▒ [-(8t-2t2)]dt=(4t^2 "-" 2/3 t^3 ) _0^4+(2/3 t^3 "-" 4t^2 ) _4^5=26.
拓展提升(水平二)