4.椭圆mx2+ny2=1与直线y=1-x交于M,N两点,连接原点与线段MN中点所得直线的斜率为,则的值是( )
A. B.
C. D.
解析:选A.由得(m+n)x2-2nx+n-1=0.设M(x1,y1),N(x2,y2),则x1+x2=,所以y1+y2=,所以线段MN的中点为P.由题意知,kOP=,所以=.故选A.
5.若直线y=x+b和曲线4x2-y2=36有两个不同的交点,则b的取值范围是________.
解析:联立直线方程和曲线方程,消去y得,-x2-5bx-b2-36=0,由直线和曲线有两个不同的交点,所以Δ=25b2-9(b2+36)>0,解得b<-或b>.
答案:∪
6.经过椭圆+y2=1的一个焦点作倾斜角为45°的直线l,交椭圆于A,B两点.设O为坐标原点,则\s\up6(→(→)·\s\up6(→(→)=________.
解析:依题意,当直线l经过椭圆的右焦点(1,0)时,其方程为y-0=tan 45°(x-1),即y=x-1,代入椭圆方程+y2=1并整理得3x2-4x=0,解得x=0或x=,所以两个交点坐标分别为(0,-1),,
所以\s\up6(→(→)·\s\up6(→(→)=-,同理,直线l经过椭圆的左焦点时,也可得\s\up6(→(→)·\s\up6(→(→)=-.
答案:-
7.已知点Q是抛物线C1:y2=2px(p>0)上异于坐标原点O的点,过点Q与抛物线C2:y=2x2相切的两条直线分别交抛物线C1于点A,B.若点Q的坐标为(1,-6),求直线AB的方程及弦AB的长.