5.(2019·江西南昌一模)设函数f(x)在(0,+∞)内可导,其导函数为f′(x),且f(ln x)=x+ln x,则f′(1)=________.
解析:因为f(ln x)=x+ln x,所以f(x)=x+ex,
所以f′(x)=1+ex,所以f′(1)=1+e1=1+e.
答案:1+e
6.若曲线y=ax2-ln x在点(1,a)处的切线平行于x轴,则a=____________.
解析:令f(x)=y=ax2-ln x,则f′(x)=2ax-,所以f′(1)=2a-1=0,得a=.
答案:
7.求下列函数的导数:
(1)y=(3x2-4x)(2x+1);
(2)y=sin(1-2cos2);
(3)y=.
解:(1)因为y=(3x2-4x)(2x+1)
=6x3+3x2-8x2-4x=6x3-5x2-4x,
所以y′=18x2-10x-4.
(2)因为y=sin(-cos)=-sin x,
所以y′=(-sin x)′=-(sin x)′=-cos x.
(3)y′==
=.
8.(2019·甘肃会宁一中模拟)已知曲线y=x3+x-2在点P0处的切线l1平行于直线4x-y-1=0,且点P0在第三象限.
(1)求P0的坐标;
(2)若直线l⊥l1,且l也过切点P0,求直线l的方程.
解:(1)由y=x3+x-2,得y′=3x2+1.
令3x2+1=4,解得x=±1.
当x=1时,y=0;当x=-1时,y=-4.
又点P0在第三象限,所以切点P0的坐标为(-1,-4).