2019-2019学年人教A版必修一 1.2.2.2分段函数与映射 课时作业
2019-2019学年人教A版必修一   1.2.2.2分段函数与映射   课时作业第2页

A.R B.(0,+∞)

C.(0,2)∪(2,+∞) D.[0,2 ∪[3,+∞)

解析:当0≤x≤1时,2x2∈[0,2 ;当x≥2时,x+1≥3,所以函数f(x)的值域是[0,2 ∪[3,+∞).

答案:D

5.已知函数f(x)={■("-" 1"," x<0"," @1"," x≥0"," )┤则不等式xf(x-1)≤1的解集为(  )

A.[-1,1 B.[-1,2

C.(-∞,1 D.[-1,+∞)

解析:原不等式等价于{■(x"-" 1<0"," @x×"(-" 1")" ≤1)┤或{■(x"-" 1≥0"," @x×1≤1"," )┤解得-1≤x≤1.

答案:A

6.已知f(x)的图象如图所示,则f(x)的解析式为               .

解析:当0≤x≤1时,f(x)=-1;

  当1≤x≤2时,设f(x)= x+b( ≠0),则{■(k+b="-" 1"," @2k+b=0"," )┤解得{■(k=1"," @b="-" 2"," )┤此时f(x)=x-2.

  综上,f(x)={■("-" 1"," 0≤x≤1"," @x"-" 2"," 1

答案:f(x)={■("-" 1"," 0≤x≤1"," @x"-" 2"," 1

7.已知函数f(x)={■(2x+1"," x≥0"," @"-" 2x+1"," x<0"," )┤则f(1)+f(-1)=     .

解析:∵f(1)=2×1+1=3,f(-1)=-2×(-1)+1=3,∴f(1)+f(-1)=3+3=6.

答案:6