2019-2020学年北师大版必修五 第三章 2.2 一元二次不等式的应用 作业
2019-2020学年北师大版必修五 第三章 2.2 一元二次不等式的应用 作业第2页

C. D.(1,+∞)

解析:选B.A={x|x2+2x-3>0}={x|x>1或x<-3},因为函数y=f(x)=x2-2ax-1的对称轴为x=a>0,f(-3)=6a+8>0,根据对称性可知,要使A∩B中恰含有一个整数,则这个整数解为2,所以有f(2)≤0且f(3)>0,即所以即≤a<.

5.在R上定义运算:AB=A(1-B),若不等式(x-a)(x+a)<1对任意的实数x∈R恒成立,则实数a的取值范围是(  )

A.-1

C.-

解析:选C.(x-a)(x+a)=(x-a)[1-(x+a)]=-x2+x+a2-a,所以-x2+x+a2-a<1,即x2-x-a2+a+1>0对x∈R恒成立,所以Δ=1-4(-a2+a+1)=4a2-4a-3<0,所以(2a-3)(2a+1)<0,即-

6.若a<0,则不等式>0的解集是________.

解析:原不等式可化为(x-4a)(x+5a)>0,

由于a<0,所以4a<-5a,

因此原不等式解集为{x|x<4a或x>-5a}.

答案:{x|x<4a或x>-5a}

7.某商家一月份至五月份累计销售额达3 860万元,六月份的销售额为500万元,七月份的销售额比六月份增加x%,八月份的销售额比七月份增加x%,九、十月份的销售总额与七、八月份的销售总额相等,若一月份至十月份的销售总额至少为7 000万元,则x的最小值为________.

解析:由题意得七月份的销售额500(1+x%),八月份的销售额为500(1+x%)2,所以一月份至十月份的销售总额为3 860+500+2[500(1+x%)+500(1+x%)2]≥7 000,解得1+x%≤-(舍去)或1+x%≥,即x%≥20%,所以xmin=20.

答案:20

8.若关于x的不等式x2-4x≥m对任意x∈[0,1]恒成立,则实数m的取值范围是________.