5.设平面α∥平面β,点A∈α,点B∈β,C是AB的中点,当点A,B分别在平面α,β内运动时,那么所有的动点C( )
A.不共面
B.不论点A,B如何移动,都共面
C.当且仅当点A,B分别在两条直线上移动时才共面
D.当且仅当点A,B分别在两条给定的异面直线上移动时才共面
【解析】选B.由平面与平面平行的性质,不论A,B如何移动,动点C均在过C且与平面α,β都平行的平面上.
6.正方体ABCD-A1B1C1D1的棱长为3,点E在A1B1上,且B1E=1,平面α∥平面BC1E,若平面α∩平面AA1B1B=A1F,则AF的长为 ( )
.Com]
A.1 B.1.5 C.2 D.3
【解析】选A.因为平面α∥平面BC1E,
平面α∩平面AA1B1B=A1F,
平面BC1E∩平面AA1B1B=BE,
所以A1F∥BE.又A1E∥BF,
所以A1EBF是平行四边形,
所以A1E=BF=2,所以AF=1.
7.如图所示,长方体ABCD-A′B′C′D′中,E,F分别为AA′,BB′的中点,过EF的平面EFGH分别交BC和AD于G,H,则HG与AB的位置关系是 ( )