当n≥2时,an=Sn-Sn-1=pn-1(p-1).
因为p≠0且p≠1,所以当n≥2时,a_(n+1)/a_n =(p^n "·(" p"-" 1")" )/(p^(n"-" 1) "·(" p"-" 1")" )=p,可知等比数列{an}的公比为p.
故a_2/a_1 =(p"·(" p"-" 1")" )/(p+q)=p,即p-1=p+q,解得q=-1.
综上可知,q=-1是数列{an}为等比数列的充要条件.