2018-2019学年北师大版选修1-1 2.1.2.2 直线与椭圆的位置关系 作业
2018-2019学年北师大版选修1-1 2.1.2.2 直线与椭圆的位置关系 作业第2页

D.x^2/75+y^2/25=1

解析:设椭圆方程为 y^2/a^2 +x^2/b^2 =1(a>b>0),

  由{■(y^2/a^2 +x^2/b^2 =1"," @3x"-" y"-" 2=0"," )┤联立得(a2+9b2)x2-12b2x+4b2-a2b2=0,x1+x2=(12b^2)/(a^2+9b^2 )=1,

  ∴a2=3b2.0①

  又由焦点为(0,±5√2)知,a2-b2=50.0②

  由①②,得a2=75,b2=25.

  故所求椭圆方程为 x^2/25+y^2/75=1.

答案:C

★5.(2016全国丙高考)已知O为坐标原点,F是椭圆C:x^2/a^2 +y^2/b^2 =1(a>b>0)的左焦点,A,B分别为C的左、右顶点,P为C上一点,且PF⊥x轴.过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为(  )

A. 1/3 B.1/2 C.2/3 D.3/4

解析:由题意知,A(-a,0),B(a,0),根据对称性,

  不妨令P("-" c"," b^2/a),

  设l:x=my-a,∴M("-" c"," (a"-" c)/m),E(0"," a/m).

  ∴直线BM:y=-(a"-" c)/(m"(" a+c")" )(x-a).

  又直线BM经过OE的中点,

  ∴("(" a"-" c")" a)/("(" a+c")" m)=a/2m,解得a=3c.

  ∴e=c/a=1/3,故选A.

答案:A

6.若直线y=kx+1与曲线x=√(1"-" 4y^2 ) 有两个不同的交点,则k的取值范围是        .

解析:由x=√(1"-" 4y^2 ),得x2+4y2=1(x≥0),

  又直线y=kx+1过定点(0,1),

  故问题转化为过定点(0,1)的直线与椭圆在y轴右侧的部分有两个公共点,

  当直线与椭圆(右侧部分)相切时,k=-√3/2,则相交时k<-√3/2.

答案:("-∞,-" √3/2)

7.过椭圆C:x^2/4+y^2/3=1的左焦点F作倾斜角为60°的直线l与椭圆C交于A,B两点,则 1/("|" AF"|" )+1/("|" BF"|" )=     .

解析:由已知,得直线l为y=√3(x+1),

  由{■(y=√3 "(" x+1")," @x^2/4+y^2/3=1"," )┤

  联立可得A(0,√3),B("-" 8/5 ",-" (3√3)/5),

又F(-1,0),∴|AF|=2,|BF|=6/5,