∵点A(8/3 "," 0)不在曲线上,
设切线的切点是(x0,y0),
则切线的斜率k=f'(x0)=1-4/(x_0^2 ),
又切线过点(x0,y0)和(8/3 "," 0),
∴k=y_0/(x_0 "-" 8/3)=(3y_0)/(3x_0 "-" 8),
∴1-4/(x_0^2 )=(3y_0)/(3x_0 "-" 8)=3(x_0+4/x_0 )/(3x_0 "-" 8)=(3x_0^2+12)/(3x_0^2 "-" 8x_0 ),
即x_0^3+3x_0^2-4x0=0.
解得x0=-4或1(x0=0舍去),
∴k=3/4或-3.
∴所求切线方程是y=3/4 (x"-" 8/3)或y=-3(x"-" 8/3),
即3x-4y-8=0或3x+y-8=0.
12.已知曲线C:y=x3.
(1)求曲线C上在横坐标为1的点处的切线的方程;
(2)第(1)小题中的切线与曲线C是否还有其他的公共点?
分析:先求出函数y=f(x)在x=x0处的导数,即曲线在该点处的切线斜率,再由直线方程的点斜式便可求出切线方程.
解:(1)将x=1代入曲线C的方程得y=1,
∴切点P(1,1).
∵y'=lim┬(Δx"→" 0) Δy/Δx=(lim)┬(Δx"→" 0) ("(" x+Δx")" ^3 "-" x^3)/Δx
=lim┬(Δx"→" 0) (3x^2 Δx+3x"(" Δx")" ^2+"(" Δx")" ^3)/Δx
=lim┬(Δx"→" 0)[3x2+3xΔx+(Δx)2]=3x2,
∴y'=f'(1)=3.
∴过点P的切线方程为y-1=3(x-1),
即3x-y-2=0.
(2)由{■(y=3"(" x"-" 1")" +1"," @y=x^3 "," )┤可得(x-1)(x2+x-2)=0,
解得x1=1,x2=-2.
从而求得公共点为P(1,1)或P(-2,-8).
说明切线与曲线C的公共点除了切点外,还有另外的公共点.