9.导学号01844003已知数列{an}的前n项和Sn=pn+q(p≠0,且p≠1),求证:数列{an}为等比数列的充要条件为q=-1.
证明(充分性)当q=-1时,a1=p-1,
当n≥2时,an=Sn-Sn-1=pn-1(p-1),当n=1时也成立.
又p≠0,且p≠1,于是a_(n+1)/a_n =(p^n "(" p"-" 1")" )/(p^(n"-" 1) "(" p"-" 1")" )=p,故数列{an}为等比数列.
(必要性)当n=1时,a1=S1=p+q.
当n≥2时,an=Sn-Sn-1=pn-1(p-1).
因为p≠0,且p≠1,
所以a_(n+1)/a_n =(p^n "(" p"-" 1")" )/(p^(n"-" 1) "(" p"-" 1")" )=p(n≥2).
因为{an}为等比数列,
所以a_2/a_1 =a_(n+1)/a_n =p,即(p"(" p"-" 1")" )/(p+q)=p,
即p-1=p+q,故q=-1.
综上所述,数列{an}为等比数列的充要条件为q=-1.