,
∴d∈(0,].
9. 答案:解:(1)由得交点(-1,2),
∵直线x-3y+2=0的斜率是,直线l与直线x-3y+2=0垂直,∴直线l的斜率为-3,
∴所求直线l的方程为y-2=-3(x+1),
即3x+y+1=0.
(2)如果l⊥x轴,则l的方程为x=-1.
如果l不垂直于x轴,设l的方程为y-2=k(x+1),
即kx-y+2+k=0,
原点O到直线l的距离,
解之,得,此时l:.
综上,直线l的方程为3x+4y-5=0和x=-1.
10. 答案:解:(1)根据题意可知,当两平行线均与线段AB垂直时,距离d=|AB|=最大;当两平行线重合,即都过A,B点时,距离d=0最小.但平行线不能重合,
∴0<d≤.
(2)当时,k=-3,
∴两条直线的方程分别为3x+y-20=0和3x+y+10=0.