1.若f(x)=-1/2(x-2)2+bln x在(1,+∞)上是减少的,则b的取值范围是 ( )
A.[-1,+∞) B.(-1,+∞)
C.(-∞,-1] D.(-∞,-1)
【解析】选C.由题意可知f'(x)=-(x-2)+b/x≤0在(1,+∞)上恒成立,即b≤x(x-2)在(1,+∞)上恒成立,由于φ(x)=x(x-2)=x2-2x在(1,+∞)上的值域是(-1,+∞),故只要b≤-1即可.
2.函数f(x)=(lnx^5)/x^2 的单调递增区间为 ( )
A.(0,e) B.(-∞,√e)
C.(0,√e) D.(√e,+∞)
【解析】选C.依题意,f(x)=(ln" " x^5)/x^2 =5lnx/x^2 ,故f'(x)=5·(1/x "·" x^2 "-" 2xlnx)/x^4 =5·(1"-" 2lnx)/x^3 ,
令f'(x)>0,解得0 3.(2019·宜春模拟)若函数f(x)=x+a/x-aln x在区间[1,2]上是非单调函数,则实数a的取值范围是 ( ) A.(1/2 "," 4/3) B.(4/3 "," +"∞" ) C.[4/3 "," +"∞" ) D.[1/2 "," 4/3] 【解析】选A.函数f(x)=x+a/x-aln x, 可得f'(x)=1-a/x^2 -a/x=(x^2 "-" ax"-" a)/x^2 ,