如图,一半径为R、粗糙程度处处相同的半圆形轨道竖直固定放置,直径POQ水平.一质量为m的质点自P点上方高度R处由静止开始下落,恰好从P点进入轨道.质点滑到轨道最低点N时,对轨道的压力为4mg,g为重力加速度的大小.用W表示质点从P点运动到N点的过程中克服摩擦力所做的功.则( )
A.W=mgR,质点恰好可以到达Q点
B.W>mgR,质点不能到达Q点
C.W=mgR,质点到达Q点后,继续上升一段距离
D.W 解析:选C.设质点到达N点的速度为vN,在N点质点受到轨道的弹力为FN,则FN-mg=,已知FN=F′N=4mg,则质点到达N点的动能为EkN=mv=mgR.质点由开始至N点的过程,由动能定理得mg·2R+Wf=EkN-0,解得摩擦力做的功为Wf=-mgR,即克服摩擦力做的功为W=-Wf=mgR. 设从N到Q的过程中克服摩擦力做功为W′,则W′ 4.质量为m=4 kg的小物块静止于水平地面上的A点,现用F=10 N的水平恒力拉动物块一段时间后撤去,物块继续滑动一段位移停在B点,A、B两点相距x=20 m,物块与地面间的动摩擦因数μ=0.2,g取10 m/s2,求: (1)物块在力F作用过程发生位移x1的大小; (2)撤去力F后物块继续滑动的时间t. 解析:(1)设物块受到的滑动摩擦力为Ff,则 Ff=μmg 根据动能定理,对物块由A到B整个过程,有 Fx1-Ffx=0 代入数据,解得x1=16 m. (2)设刚撤去力F时物块的速度为v,此后物块的加速度为a,滑动的位移为x2,则x