8.已知函数f(x)=ax4-4ax3+b(a>0)在区间[1,4]上的最大值为3,最小值为-6,则a+b= .
解析:f'(x)=4ax3-12ax2(a>0,x∈[1,4]).
由f'(x)=0,得x=0(舍去)或x=3.
易知当x=3时,f(x)取到最小值b-27a.
∵f(1)=b-3a,f(4)=b,∴f(4)为最大值.
由{■(b=3"," @b"-" 27a="-" 6"," )┤解得{■(a=1/3 "," @b=3"," )┤故a+b=10/3.
答案:10/3
9.若对任意的x>0,恒有ln x≤px-1(p>0),则p的取值范围是 .
解析:原不等式可化为ln x-px+1≤0,令f(x)=ln x-px+1,故只需f(x)max≤0.由f'(x)=1/x-p知f(x)在(0"," 1/p)上递增;在(1/p "," +"∞" )上递减.故f(x)max=f(x)极大值=f(1/p)=-ln p,即-ln p≤0,解得p≥1.
答案:[1,+∞)