如图所示,过点C作CO1⊥AB于点O1.
在半圆中可得∠BCA=90°,∠BAC=30°,AB=2R,∴AC=√3R,BC=R,CO1=√3/2R,
∴S球=4πR2,S_("圆锥" AO_1 "侧" )=π×√3/2R×√3R=3/2πR2,
S_("圆锥" BO_1 "侧" )=π×√3/2R×R=√3/2πR2,
∴S几何体表=S球+S_("圆锥" AO_1 "侧" )+S_("圆锥" BO_1 "侧" )
=11/2πR2+√3/2πR2=(11+√3)/2πR2.
故旋转所得几何体的表面积为(11+√3)/2πR2.